Connor-Stevens

Main equations

cmdVdt=im+IeA τm(V)dmdt=m(V)m τh(V)dhdt=h(V)h τn(V)dndt=n(V)n τa(V)dadt=a(V)a τb(V)dbdt=b(V)b im=g¯_L(VEL)+g¯_Nam3h(VE_Na)+g¯_Kn4(VE_K)+g¯_Aa3b(VEA)

alpha-values

\(\alpha_n(V) = \frac{0.02mV^{-1} (V + 45.7mV)}{1 - \exp(-0.1mV^{-1} (V + 45.7mV))}\)

αm(V)=0.38mV1(V+29.7mV)1exp(0.1mV1(V+29.7mV)) αh(V)=0.266exp(0.05mV1(V+48.0mV))

beta-values

\(\beta_n(V) = 0.25 \exp(-0.0125mV^{-1} (V + 55.7mV))\)

βm(V)=15.2exp(0.0556mV1(V+54.7mV)) βh(V)=3.81+exp(0.1mV1(V+18mV))

time constants

\(\tau_n(V) = \frac{1.0ms}{\alpha_n(V) + \beta_n(V)}\)

τm(V)=1.0msαm(V)+βm(V) τh(V)=1.0msαh(V)+βh(V) τa(V)=0.3632ms+1.158ms1.0+exp(0.0497mV1(V+55.96mV)) τb(V)=1.24ms+2.678ms1.0+exp(0.0624mV1(V+50.0mV))

asymptotic values

a(V)=(0.0761exp(0.0314mV1(V+94.22mV))1+exp(0.0346mV1(V+1.17mV))))1/3ms b(V)=(11+exp(0.0688mV1(V+53.3mV)))4ms n(V)=αn(V)τn(V) m(V)=αm(V)τm(V) h(V)=αh(V)τh(V)

Suitable initial conditions

m(t=0)=0.010 n(t=0)=0.156 h(t=0)=0.966 a(t=0)=0.540 b(t=0)=0.289 V(t=0)=68.0mV

Parameter

cm=0.1μFmm2 IeA=0.35μAmm2 g¯L=0.003mSmm2 g¯Na=1.2mSmm2 g¯K=0.2mSmm2 g¯A=0.477mSmm2 EL=17.0mV ENa=55.0mV EK=72.0mV EA=75.0mV

Transient Ca2+ Conductance

M=11+exp((V+57mV)/6.2mV) H=11+exp((V+81mV)/4mV) τM=0.612ms+1msexp((V+132mV)/16.7mV)+exp((V+16.8mV)/18.2mV)

if V<80mV:

τH=1msexp((V+467mV)/66.6mV)

else:

τH=28ms+1msexp((V+22mV)/10.5mV)

Ca2+- depentdent K+ Conducatance

c=([Ca2+][Ca2+]+3μM)11+exp((V+28.3mV)/12.6mV) τC=90.3ms75.1ms1+exp((V+46mV)/22.7mV)

The source code is Open Source and can be found on GitHub.