OpenCV2: Play, write, read a video
The goal
How to playback a video? Howto save it into a mp4 file? Howto load from a mp4 file?
Questions to David Rotermund
Write the video into a mp4 file
import numpy as np
import cv2 # type: ignore
import tqdm # type: ignore
def write_video(frames: np.ndarray, filename: str = "test", fps: float = 20.0) -> None:
assert len(filename) > 0, "write_video: Filename is empty."
assert frames.size > 0, "write_video: The frame is empty."
assert frames.ndim == 4, "write_video: The frame has wrong dimensions."
x: int = frames.shape[1]
y: int = frames.shape[0]
n: int = frames.shape[3]
fullname: str = filename + ".mp4"
fourcc = cv2.VideoWriter_fourcc("m", "p", "4", "v")
out = cv2.VideoWriter(fullname, fourcc, fps, (x, y))
assert (
out.isOpened() is True
), "write_video: Unknown error occurred during writing, closing file!"
print(f"Writing frames into {fullname} at {fps:.1f} FPS.")
for i in tqdm.trange(n):
out.write(frames[..., i])
out.release()
# Create test data
axis_x = np.arange(-50, 51)[:, np.newaxis, np.newaxis] / 50
axis_y = np.arange(-50, 51)[np.newaxis, :, np.newaxis] / 50
axis_z = np.arange(-50, 51)[np.newaxis, np.newaxis, :] / 50
test_data = np.sqrt(axis_x**2 + axis_y**2 + axis_z**2) < 0.75
# Adding an additional axis for the color channel
test_data = test_data[:, :, :, np.newaxis]
test_data = np.tile(test_data, (1, 1, 1, 3))
test_data = test_data.astype(dtype=np.float32)
# Put the time axis as last axis
test_data = np.moveaxis(test_data, 0, -1)
# Conversion to uint8
test_data -= test_data.min()
test_data /= test_data.max()
test_data *= 255
test_data = test_data.astype(dtype=np.uint8)
print(test_data.shape) # -> (101, 101, 3, 101)
write_video(frames=test_data, filename="test", fps=20.0)
Read the data from a mp4 file
import numpy as np
import cv2 # type: ignore
def read_video(filename: str, display: bool = False) -> np.ndarray:
assert len(filename) > 0, "read_video: Filename is empty."
frames: np.ndarray = np.array([])
cap = cv2.VideoCapture(filename)
assert cap.isOpened() is True, "read_video: Error opening video stream or file!"
n: int = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
x: int = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
y: int = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"Reading {n} frames with {x} x {y} pixels.")
frames = np.zeros((y, x, 3, n)).astype(np.uint8)
i: int = 0
while cap.isOpened():
ret, frame = cap.read()
if ret is True:
frames[:, :, :, i] = frame
i += 1
if display is True:
cv2.imshow("Reading", frame)
cv2.waitKey(25)
else:
break
cap.release()
if display is True:
cv2.destroyWindow("Reading")
return frames
movie = read_video("test.mp4", display=True)
print(movie.shape) # -> (100, 100, 3, 101)
Playback a video
import numpy as np
import cv2 # type: ignore
import time
def show_video(frames: np.ndarray, fps: float = 20.0) -> np.ndarray:
assert frames.size > 0, "The frame is empty."
assert frames.ndim == 4, "The frame has wrong dimensions."
n: int = frames.shape[3]
dt: float = 1 / fps
t: np.ndarray = np.zeros((n + 1))
t[0] = time.perf_counter()
for i in range(n):
frame = frames[:, :, :, i]
cv2.imshow("Display", frame)
t_wait: float = t[i] + dt - time.perf_counter()
retval = cv2.waitKey(int(max(1, 1000 * t_wait)))
t[i + 1] = time.perf_counter()
if retval != -1:
break
cv2.destroyWindow("Display")
return t
# Create test data
axis_x = np.arange(-50, 51)[:, np.newaxis, np.newaxis] / 50
axis_y = np.arange(-50, 51)[np.newaxis, :, np.newaxis] / 50
axis_z = np.arange(-50, 51)[np.newaxis, np.newaxis, :] / 50
test_data = np.sqrt(axis_x**2 + axis_y**2 + axis_z**2) < 0.75
# Adding an additional axis for the color channel
test_data = test_data[:, :, :, np.newaxis]
test_data = np.tile(test_data, (1, 1, 1, 3))
test_data = test_data.astype(dtype=np.float32)
# Put the time axis as last axis
test_data = np.moveaxis(test_data, 0, -1)
# Conversion to uint8
test_data -= test_data.min()
test_data /= test_data.max()
test_data *= 255
test_data = test_data.astype(dtype=np.uint8)
print(test_data.shape) # -> (101, 101, 3, 101)
timings = show_video(frames=test_data, fps=20.0)
print(timings.shape) # -> (102,)
The source code is Open Source and can be found on GitHub.