Numpy: Dealing with Matlab files
The goal
We want to read and write Matlab files under Python.
Questions to David Rotermund
Reminder: Learning Python as Matlab user Please read NumPy for MATLAB users
Mat files under Python
MATLAB < 7.3 format mat files
This is a job for scipy.io
loadmat(file_name[, mdict, appendmat]) | Load MATLAB file. |
savemat(file_name, mdict[, appendmat, …]) | Save a dictionary of names and arrays into a MATLAB-style .mat file. |
whosmat(file_name[, appendmat]) | List variables inside a MATLAB file. |
Read
Under Matlab we create a test file
>> A = rand(10,100);
>> save -v7 Test_1.mat A
Under Python we look into the file for information:
import scipy.io as sio
Info = sio.whosmat("Test_1.mat")
print(Info) # --> [('A', (10, 100), 'double')]
And we can read the data:
import numpy as np
import scipy.io as sio
mat_data = sio.loadmat("Test_1.mat")
print(
mat_data.keys()
) # -> dict_keys(['__header__', '__version__', '__globals__', 'A'])
a = mat_data["A"]
print(type(a)) # --> <class 'numpy.ndarray'>
print(a.dtype) # --> float64
print(a.shape) # --> (10, 100)
Write
Under Python we generate a .mat file:
import numpy as np
import scipy.io as sio
myrng = np.random.default_rng()
A: np.ndarray = myrng.random((10, 100), dtype=np.float64)
B: str = "Hellp world!"
mdic = {"A": A, "ImportantMessage": B}
sio.savemat("Test_2.mat", mdic)
And read it in under Matlab:
>> load Test_2.mat
>> whos
Name Size Bytes Class Attributes
A 10x100 8000 double
ImportantMessage 1x12 24 char
>> ImportantMessage
ImportantMessage =
'Hellp world!'
MATLAB == 7.3 format mat files (for very big files)
Read
Under Matlab we create another test file
>> A = rand(10,100);
>> B = rand(5, 10,100);
>> save -v7.3 Test_3.mat A B
And we can read the data under Python. But be aware that the matrix is in reversed order now. 10x100 -> 100x10 and 5x10x100 -> 100x10x5
import numpy as np
import h5py
file_handle = h5py.File("Test_3.mat", "r")
print(file_handle.keys()) # --> <KeysViewHDF5 ['A']>
hdf5_a = file_handle["A"]
print(hdf5_a) # --> <HDF5 dataset "A": shape (100, 10), type "<f8">
a = np.array(hdf5_a)
print(type(a)) # --> <class 'numpy.ndarray'>
print(a.dtype) # --> float64
print(a.shape) # --> (100, 10)
hdf5_b = file_handle["B"]
print(hdf5_b) # --> <HDF5 dataset "B": shape (100, 10), type "<f8">
b = np.array(hdf5_b)
print(type(b)) # --> <class 'numpy.ndarray'>
print(b.dtype) # --> float64
print(b.shape) # --> (100, 10, 5)
file_handle.close() # optional
Note: If you – in a real world example – see a HDF5 group (e.g. <HDF5 group “/#refs#” (16 members)> ) instead of a HDF5 dataset then the variable is a container again (very similar to file_handle in the example). It will have keys and you can go down the tree until you find the HDF5 datasets. Especially in the case of Matlab structures you might need to go deeper.
Write
Under Python we generate a .hd5 file:
import numpy as np
import h5py
myrng = np.random.default_rng()
a: np.ndarray = myrng.random((10, 100), dtype=np.float64)
b: np.ndarray = myrng.random((2, 20, 200), dtype=np.float64)
file_handle = h5py.File("Test_4.hd5", "w")
dataset_a = file_handle.create_dataset("A", data=a)
dataset_b = file_handle.create_dataset("B", data=b)
file_handle.close() # optional
Under Matlab we now can extract information about the hd5 file:
>> info = h5info('Test_4.hd5');
>> length(info.Datasets)
ans =
2
>> info.Datasets(1)
ans =
struct with fields:
Name: 'A'
Datatype: [1x1 struct]
Dataspace: [1x1 struct]
ChunkSize: []
FillValue: 0
Filters: []
Attributes: []
>> info.Datasets(2)
ans =
struct with fields:
Name: 'B'
Datatype: [1x1 struct]
Dataspace: [1x1 struct]
ChunkSize: []
FillValue: 0
Filters: []
Attributes: []
And now we read it in under Matlab:
>> h5disp('Test_4.hd5')
HDF5 Test_4.hd5
Group '/'
Dataset 'A'
Size: 100x10
MaxSize: 100x10
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000
Dataset 'B'
Size: 200x20x2
MaxSize: 200x20x2
Datatype: H5T_IEEE_F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000
Now we know that the databases are at ‘/A’ and ‘/B’. With information we can read the matrices. But be aware that the matrices are in reversed order!
>> a = h5read('Test_4.hd5','/A');
>> b = h5read('Test_4.hd5','/B');
>> whos
Name Size Bytes Class Attributes
a 100x10 8000 double
b 200x20x2 64000 double
The source code is Open Source and can be found on GitHub.