Power and mean
Top
Questions to David Rotermund
The order is important
You are not allowed to average over the trials before calculating the power. This is the same for calculating the fft power as well as the wavelet power.
The worst case senario would be two waves in anti-phase:
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
sinus_a = np.sin(f * t * 2.0 * np.pi)
sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi)
plt.plot(t, sinus_a, label="a")
plt.plot(t, sinus_b, label="b")
plt.plot(t, (sinus_a + sinus_b) / 2.0, "k--", label="(a+b)/2")
plt.legend()
plt.xlabel("t [s]")
plt.show()
However if you have server randomly phase-jittered curves then something similar will happen.
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
n: int = 1000
rng = np.random.default_rng(1)
sinus = np.sin(f * t[:, np.newaxis] * 2.0 * np.pi + 2.0 * np.pi * rng.random((1, n)))
print(sinus.shape)
plt.plot(t, sinus)
plt.plot(t, sinus.mean(axis=-1), "k--")
plt.show()
And please remember the Fourier approach: Every curve can be decomposed in to sin waves.
Fourier is a linear operation
Since Fourier is a linear operation, it doesn’t help you if you shift the averaging after the fft. Same problem:
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
sampling_frequency: float = 1.0 / (t[1] - t[0])
sinus_a = np.sin(f * t * 2.0 * np.pi)
sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi)
sinus_a_fft: np.ndarray = np.fft.rfft(sinus_a)
sinus_b_fft: np.ndarray = np.fft.rfft(sinus_b)
frequency_axis: np.ndarray = np.fft.rfftfreq(sinus_a.shape[0]) * sampling_frequency
y_fft = (sinus_a_fft + sinus_b_fft) / 2.0
y_power: np.ndarray = (1 / (sampling_frequency * sinus_a.shape[0])) * np.abs(y_fft) ** 2
y_power[1:-1] *= 2
if frequency_axis[-1] != (sampling_frequency / 2.0):
y_power[-1] *= 2
plt.plot(frequency_axis, y_power, label="Power")
plt.xlabel("Frequency [Hz]")
plt.show()
How to do it correctly
First calculate the power and then average:
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
sampling_frequency: float = 1.0 / (t[1] - t[0])
sinus_a = np.sin(f * t * 2.0 * np.pi)
sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi)
sinus_a_fft: np.ndarray = np.fft.rfft(sinus_a)
sinus_b_fft: np.ndarray = np.fft.rfft(sinus_b)
frequency_axis: np.ndarray = np.fft.rfftfreq(sinus_a.shape[0]) * sampling_frequency
y_power_a: np.ndarray = (1 / (sampling_frequency * sinus_a.shape[0])) * np.abs(
sinus_a_fft
) ** 2
y_power_a[1:-1] *= 2
y_power_b: np.ndarray = (1 / (sampling_frequency * sinus_b.shape[0])) * np.abs(
sinus_b_fft
) ** 2
y_power_b[1:-1] *= 2
if frequency_axis[-1] != (sampling_frequency / 2.0):
y_power_a[-1] *= 2
y_power_b[-1] *= 2
y_power = (y_power_a + y_power_b) / 2.0
plt.plot(frequency_axis, y_power, label="Power")
plt.xlabel("Frequency [Hz]")
plt.xlim(0, 50)
plt.show()
The source code is Open Source and can be found on GitHub.