Random numbers the non-legacy way
Goal
If you don’t see something like np.random.default_rng() in your code then you are probably using the old Legacy Random Generation.
Don’t use the legacy methods for new source code!!!
numpy.random.random() == old == bad == don’t use
Do it like this:
import numpy as np
rng = np.random.default_rng()
random_values = rng.random(size=(2, 10))
Questions to David Rotermund
Random Generator
Typical usage
import numpy as np
rng = np.random.default_rng()
random_values = rng.random(size=(2, 10))
print(random_values)
Output:
[[0.81103943 0.1110591 0.42978062 0.47818377 0.91138636 0.47051031
0.08662082 0.1643707 0.48717037 0.17870536]
[0.94499902 0.74089677 0.12221184 0.61603001 0.91198789 0.33900609
0.75832792 0.74465679 0.19940125 0.56674595]]
With seed:
import numpy as np
rng = np.random.default_rng(seed=23)
random_values = rng.random(size=(2, 10))
print(random_values)
Output:
[[0.69393308 0.64145822 0.12864422 0.11370805 0.65334552 0.85345711
0.20177913 0.21801864 0.71658464 0.47069967]
[0.41522193 0.3491478 0.06385375 0.45466617 0.30145328 0.38907675
0.54029782 0.68358969 0.62475238 0.74270445]]
Changing the random number generator
Default
import numpy as np
rng = np.random.default_rng()
print(rng) # -> Generator(PCG64)
If you don’t like it there are other options:
PCG64 – The default | A fast generator that can be advanced by an arbitrary amount. See the documentation for advance. PCG-64 has a period of 2^128. See the PCG author’s page for more details about this class of PRNG. |
MT19937 | The standard Python BitGenerator. Adds a MT19937.jumped function that returns a new generator with state as-if 2^128 draws have been made. |
PCG64DXSM | An upgraded version of PCG-64 with better statistical properties in parallel contexts. See Upgrading PCG64 with PCG64DXSM for more information on these improvements. |
Philox | A counter-based generator capable of being advanced an arbitrary number of steps or generating independent streams. See the Random123 page for more details about this class of bit generators. |
SFC64 | A fast generator based on random invertible mappings. Usually the fastest generator of the four. See the SFC author’s page for (a little) more detail. |
Distributions (you will use)
The most important ones are in bold. If you see a function argument out, then you can reuse an existing np array (i.e. in-place operation) as target.
integers(low[, high, size, dtype, endpoint]) | Return random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high (inclusive). |
random([size, dtype, out]) | Return random floats in the half-open interval [0.0, 1.0). |
choice(a[, size, replace, p, axis, shuffle]) | Generates a random sample from a given array |
bytes(length) | Return random bytes. |
binomial(n, p[, size]) | Draw samples from a binomial distribution. |
multinomial(n, pvals[, size]) | Draw samples from a multinomial distribution. |
multivariate_normal(mean, cov[, size, …]) | Draw random samples from a multivariate normal distribution. |
normal([loc, scale, size]) | Draw random samples from a normal (Gaussian) distribution. |
poisson([lam, size]) | Draw samples from a Poisson distribution. |
standard_normal([size, dtype, out]) | Draw samples from a standard Normal distribution (mean=0, stdev=1). |
uniform([low, high, size]) | Draw samples from a uniform distribution. |
random
import numpy as np
rng = np.random.default_rng()
random_values = rng.random(size=(2, 10))
print(random_values)
Output:
[[0.75309105 0.15751286 0.49454759 0.18204807 0.88459006 0.78685769
0.68525047 0.4000365 0.45317167 0.62412358]
[0.01082224 0.13257961 0.75638974 0.84886965 0.19755022 0.18697649
0.47064409 0.66128207 0.30285691 0.53465021]]
integers
import numpy as np
rng = np.random.default_rng()
random_values = rng.integers(
low=1, high=3, size=(2, 10), dtype=np.uint64, endpoint=True
)
print(random_values)
Output:
[[2 3 3 2 1 3 1 1 2 2]
[3 3 2 3 3 2 3 3 1 3]]
choice
import numpy as np
rng = np.random.default_rng()
p = np.array([1, 2, 3]).astype(np.float64)
p /= p.sum()
print(f"p: {p}")
random_values = rng.choice(a=p.shape[0], p=p, size=(2, 10))
print(random_values)
Output:
p: [0.16666667 0.33333333 0.5 ]
[[0 2 2 1 2 1 2 1 0 1]
[2 0 1 2 2 1 0 2 1 2]]
Permutations
shuffle(x[, axis]) | Modify an array or sequence in-place by shuffling its contents. |
permutation(x[, axis]) | Randomly permute a sequence, or return a permuted range. |
permuted(x[, axis, out]) | Randomly permute x along axis axis. |
method | copy/in-place | axis handling |
---|---|---|
shuffle | in-place | as if 1d |
permutation | copy | as if 1d |
permuted | either (use ‘out’ for in-place) | axis independent |
shuffle
import numpy as np
rng = np.random.default_rng()
idx_randomized = np.arange(0, 10)
rng.shuffle(idx_randomized)
print(idx_randomized)
Output:
[0 2 8 9 5 4 3 6 1 7]
permutation
import numpy as np
rng = np.random.default_rng()
idx_randomized = rng.permutation(10)
print(idx_randomized)
Output:
[9 4 7 2 6 3 1 8 5 0]
permuted
import numpy as np
rng = np.random.default_rng()
idx = np.arange(0, 10)
idx_randomized = rng.permuted(idx)
print(idx_randomized)
Output:
[4 1 2 8 9 6 0 5 7 3]
All Distributions
You need more distributions? Go here.
Multithreaded Generation
The four core distribution (random, standard_normal, standard_exponential, and standard_gamma) can be used with multi-threading. Please look here for an example.
The source code is Open Source and can be found on GitHub.