Numpy: Beyond normal np.save
The goal
Let’s save and load data under numpy. This can be more complicated than expected.
Questions to David Rotermund
Normal np.save and np.load
A normal np.save and np.load cycle may look like this:
import numpy as np
rng = np.random.default_rng()
a_original: np.ndarray = rng.random((100, 10))
np.save("a.npy", a_original)
a_load: np.ndarray = np.load("a.npy")
print(np.abs(a_original - a_load).sum()) # -> 0.0
Saving non-standard numpy data
You may have tried this and wondered why it doesn’t work
import numpy as np
rng = np.random.default_rng()
a_original: list = []
a_original.append(rng.random((100, 10)))
a_original.append(rng.random((100, 10)))
a_original.append("now something completely different")
np.save("b.npy", a_original)
a_load: np.ndarray = np.load("b.npy")
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/data_1/davrot/MRI_Fruits/test/test.py in line 12
26 a_original.append("now something completely different")
28 np.save("b.npy", a_original)
---> 29 a_load: np.ndarray = np.load("b.npy")
[...]
This is how you have to do it:
import numpy as np
rng = np.random.default_rng()
a_original: list = []
a_original.append(rng.random((100, 10)))
a_original.append(rng.random((100, 10)))
a_original.append("now something completely different")
np.save("b.npy", np.array(a_original, dtype=object))
a_load: np.ndarray = np.load("b.npy", allow_pickle=True)
print(np.abs(a_original[0] - a_load[0]).sum()) # -> 0.0
print(np.abs(a_original[1] - a_load[1]).sum()) # -> 0.0
print(a_load[2]) # -> now something completely different
np.savez
We can save more than one variable into one file. We need to use np.savez for this. Now the file extension is npz instead of npy. This is required!
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np_file = np.load("c.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['a_original', 'b_original', 'c_original']
Please don’t use savez like this because this can cause human errors down the road:
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
# np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np.savez("d.npz", a_original, b_original, c_original)
np_file = np.load("d.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['arr_0', 'arr_1', 'arr_2']
You don’t need to keep the variable name but keep it human readable:
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
d_original = rng.random((100, 10))
np.savez("e.npz", what=a_original, a=b_original, nice=c_original, day=d_original)
np_file = np.load("e.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['what', 'a', 'nice', 'day']
Now we can work with the file and the stored variables:
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np_file = np.load("c.npz")
print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0
print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0
print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0
np.savez_compressed
We can compress the data too:
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez_compressed(
"f.npz", a_original=a_original, b_original=b_original, c_original=c_original
)
np_file = np.load("f.npz")
print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0
print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0
print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0
The source code is Open Source and can be found on GitHub.