Pandas

The goal

Pandas can be e.g. used for handling meta data from experiments. It is a kind of SQL / Excel extension for Python.

Questions to David Rotermund

pip install pandas

Pandas

The two most important data types of Pandas are:​

  • Series​
  • Data Frames

“Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.”​

It is the basis for:

  • scipy.stats​

    This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more.

  • Pingouin

    Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy.

  • rPy2

    rpy2 is an interface to R running embedded in a Python process.

Pandas.Series​

class pandas.Series(data=None, index=None, dtype=None, name=None, copy=None, fastpath=False)

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

Operations between Series (+, -, /, *, **) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.

Example 1:

import pandas as pd

example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example)

Output:

0    Bambu
1     Tree
2    Sleep
dtype: object

Example 2:

import numpy as np
import pandas as pd

example = pd.Series([99, 88, 32])
print(example)

Output:

0    99
1    88
2    32
dtype: int64

Example 3:

import numpy as np
import pandas as pd

rng = np.random.default_rng()
a = rng.random((5))

example = pd.Series(a)
print(example)

Output:

0    0.305920
1    0.633360
2    0.219094
3    0.005722
4    0.006673
dtype: float64

Example 4:

import pandas as pd

example = pd.Series(["Bambu", 3, "Sleep"])
print(example)

Output:

0    Bambu
1        3
2    Sleep
dtype: object

index and values

import pandas as pd

example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example.index)
print()
print(example.values)

Output:

RangeIndex(start=0, stop=3, step=1)

['Bambu' 'Tree' 'Sleep']

More complex indexing and re-indexing is possible:​

import pandas as pd

index_1 = pd.Series(["Food", "HappyPlace", "Favorite"])
data_1 = pd.Series(["Bambu", "Tree", "Sleep"], index=index_1)
print(data_1)
print()

index_2 = pd.Series(["Food", "ShoeSize", "Favorite"])
data_2 = pd.Series(data_1, index=index_2)

print(data_2)

Output:

Food          Bambu
HappyPlace     Tree
Favorite      Sleep
dtype: object

Food        Bambu
ShoeSize      NaN
Favorite    Sleep
dtype: object

pandas.Series.iloc

property Series.iloc

Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

  • An integer, e.g. 5.
  • A list or array of integers, e.g. [4, 3, 0].
  • A slice object with ints, e.g. 1:7.
  • A boolean array.
  • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.
  • A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1).
import pandas as pd

index_1 = pd.Series(["Food", "HappyPlace", "Favorite"])
data_1 = pd.Series(["Bambu", "Tree", "Sleep"], index=index_1)
print(data_1.iloc[0])
print(data_1["Food"])

Converting a dictionary

import pandas as pd

data_1 = pd.Series({"A": 34, "B": 54, "C": "Blub"})
print(data_1)

Output:

A      34
B      54
C    Blub
dtype: object

Operations on Series

Example: Math on one series

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data = rng.random((5))
data_1 = pd.Series(np_data, index=index_1)

print(data_1)
print()
print(data_1 > 0.5)
print()
print(data_1[data_1 > 0.5])
print()
print(sum(data_1))

Output:

A    0.772007
B    0.143811
C    0.524829
D    0.413733
E    0.100003
dtype: float64

A     True
B    False
C     True
D    False
E    False
dtype: bool

A    0.772007
C    0.524829
dtype: float64

1.9543834923707668

Example: Math with two series

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)

index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)


print(data_1)
print()
print(data_2)
print()
print((data_1 + data_2))
print()
print((data_1 + data_2) * 3 + 10)

Output:

A    0.702998
B    0.032210
C    0.534611
D    0.839864
E    0.118698
dtype: float64

D    0.321691
E    0.024475
F    0.168798
G    0.232925
H    0.782430
dtype: float64

A         NaN
B         NaN
C         NaN
D    1.161555
E    0.143173
F         NaN
G         NaN
H         NaN
dtype: float64

A          NaN
B          NaN
C          NaN
D    13.484666
E    10.429519
F          NaN
G          NaN
H          NaN
dtype: float64

Example: Applying functions (pandas.Series.apply)

Series.apply(func, convert_dtype=_NoDefault.no_default, args=(), *, by_row='compat', **kwargs)

Invoke function on values of Series.

Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)

print(data_1)
print()
print(data_1[["A", "D"]])
print()

data_2 = data_1.apply(np.log)
print(data_2)
print()

data_3 = data_1.apply(lambda x: x if x > 0.5 else 0)
print(data_3)
print()

Output:

A    0.803968
B    0.234188
C    0.511411
D    0.858326
E    0.374570
dtype: float64

A    0.803968
D    0.858326
dtype: float64

A   -0.218195
B   -1.451633
C   -0.670581
D   -0.152771
E   -0.981978
dtype: float64

A    0.803968
B    0.000000
C    0.511411
D    0.858326
E    0.000000
dtype: float64

pandas.Series.isnull and pandas.Series.notnull

Note: A value set to NONE will lead to a NaN.​

Series.isnull()

Series.isnull is an alias for Series.isna.

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ‘’ or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Series.notnull()

Series.notnull is an alias for Series.notna.

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ‘’ or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)

index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)

data_3 = data_1 + data_2

print(data_3)
print()
print(data_3.isnull())
print()
print(data_3[data_3.isnull()])
print()
print(data_3.notnull())
print()
print(data_3[data_3.notnull()])

Output

A         NaN
B         NaN
C         NaN
D    0.970744
E    0.425544
F         NaN
G         NaN
H         NaN
dtype: float64

A     True
B     True
C     True
D    False
E    False
F     True
G     True
H     True
dtype: bool

A   NaN
B   NaN
C   NaN
F   NaN
G   NaN
H   NaN
dtype: float64

A    False
B    False
C    False
D     True
E     True
F    False
G    False
H    False
dtype: bool

D    0.970744
E    0.425544
dtype: float64

pandas.Series.dropna or pandas.Series.fillna

Series.dropna(*, axis=0, inplace=False, how=None, ignore_index=False)

Return a new Series with missing values removed.

Series.fillna(value=None, *, method=None, axis=None, inplace=False, limit=None, downcast=_NoDefault.no_default)

Fill NA/NaN values using the specified method.

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)

index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)

data_3 = data_1 + data_2

print(data_3)
print()
print(data_3.dropna())
print()
print(data_3.fillna(0.0))  # 0.0 => Value for filling
print()
print()
print(data_3.fillna(3.3))  # 3.3 => Value for filling
print()

Output:

A         NaN
B         NaN
C         NaN
D    0.660655
E    0.256244
F         NaN
G         NaN
H         NaN
dtype: float64

D    0.660655
E    0.256244
dtype: float64

A    0.000000
B    0.000000
C    0.000000
D    0.660655
E    0.256244
F    0.000000
G    0.000000
H    0.000000
dtype: float64


A    3.300000
B    3.300000
C    3.300000
D    0.660655
E    0.256244
F    3.300000
G    3.300000
H    3.300000
dtype: float64

pandas.concat and pandas.Series.sort_index and pandas.Series.sort_values

pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)

Concatenate pandas objects along a particular axis.

Allows optional set logic along the other axes.

Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Series.sort_index(*, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)

Sort Series by index labels.

Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series and returns None.

Series.sort_values(*, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)

Sort by the values.

Sort a Series in ascending or descending order by some criterion.

import pandas as pd
import numpy as np

index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)

index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)

data_3 = pd.concat([data_1, data_2])
print(data_3)
print()
print(data_3.sort_index())
print()
print(data_3.sort_values())
print()

Output:

A    0.480872
B    0.830495
C    0.420633
D    0.824773
E    0.580569
D    0.224508
E    0.250787
F    0.056334
G    0.880224
H    0.552785
dtype: float64

A    0.480872
B    0.830495
C    0.420633
D    0.824773
D    0.224508
E    0.580569
E    0.250787
F    0.056334
G    0.880224
H    0.552785
dtype: float64

F    0.056334
D    0.224508
E    0.250787
C    0.420633
A    0.480872
H    0.552785
E    0.580569
D    0.824773
B    0.830495
G    0.880224
dtype: float64

DataFrame

class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=None)

Two-dimensional, size-mutable, potentially heterogeneous tabular data.

Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.

Combining two series into one dataframe

import pandas as pd
import numpy as np

index = pd.Series(["A", "B", "C", "D", "E"])

rng = np.random.default_rng()

np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index)

np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index)

data_3 = pd.concat([data_1, data_2], axis=1)

print(type(data_1))  # -> <class 'pandas.core.series.Series'>
print(type(data_2))  # -> <class 'pandas.core.series.Series'>
print(type(data_3))  # -> <class 'pandas.core.frame.DataFrame'>

print(data_3)
print()
print(data_3.columns)  # -> RangeIndex(start=0, stop=2, step=1)
print(data_3.columns.values)  # -> [0 1]
          0         1
A  0.942032  0.213441
B  0.379446  0.937325
C  0.645035  0.799521
D  0.546175  0.656740
E  0.564155  0.546581

Renaming the columns

data_3.columns = ["Alpha", "Beta"]

print(data_3)
print()
print(data_3.columns) # -> Index(['Alpha', 'Beta'], dtype='object')
print()
print(data_3[ "Beta"])

Output:

      Alpha      Beta
A  0.942032  0.213441
B  0.379446  0.937325
C  0.645035  0.799521
D  0.546175  0.656740
E  0.564155  0.546581

A    0.213441
B    0.937325
C    0.799521
D    0.656740
E    0.546581
Name: Beta, dtype: float64

Naming the series beforehand

import pandas as pd
import numpy as np

index = pd.Series(["A", "B", "C", "D", "E"])

rng = np.random.default_rng()

np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index)

np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index)

data_1.name = "Alpha"
data_2.name = "Beta"

data_3 = pd.concat([data_1, data_2], axis=1)

print(data_3)
print()
print(data_3.Alpha)
print()
print(data_3["Alpha"])

Output

      Alpha      Beta
A  0.364595  0.975976
B  0.087011  0.019219
C  0.673742  0.668080
D  0.416863  0.665931
E  0.243193  0.221337

A    0.364595
B    0.087011
C    0.673742
D    0.416863
E    0.243193
Name: Alpha, dtype: float64

A    0.364595
B    0.087011
C    0.673742
D    0.416863
E    0.243193
Name: Alpha, dtype: float64

Order

Replace the index:​

New_Data = pandas.DataFrame(Data, index=New_Index)

Reorder the columns:​

New_Data = pandas.DataFrame(Data, columns = ["ColumnName2", ColumnName3", "ColumnName1"])​

Reorder index and columns:

New_Data = Data.reindex(index=[0, 2, 4, 6,  8, 10, 12, 1, 3, 5, 7, 9, 11], columns=['ColumnName2', 'ColumnName3', 'ColumnName1'])

Reorder index and columns but inplace (i.e. no new variable):​

Data.reindex(index=[0, 2, 4, 6,  8, 10, 12, 1, 3, 5, 7, 9, 11], columns=['ColumnName2', 'ColumnName3', 'ColumnName1'], inplace=True)

More index shenanigans:

New_Data = pandas.DataFrame(Data, columns = ["ColumnName2", ColumnName3"], ​index=Data["ColumnName1"])
New_Data = Data.set_index("ColumnName1")
Data.set_index("ColumnName1", inplace=True)

property DataFrame.loc, property DataFrame.iloc, pandas.DataFrame.sum, and pandas.DataFrame.cumsum

property DataFrame.loc

Access a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

  • A single label, e.g. 5 or ‘a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index).
  • A list or array of labels, e.g. [‘a’, ‘b’, ‘c’].
  • A slice object with labels, e.g. ‘a’:’f’.
  • A boolean array of the same length as the axis being sliced, e.g. [True, False, True].
  • An alignable boolean Series. The index of the key will be aligned before masking.
  • An alignable Index. The Index of the returned selection will be the input.
  • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)
property DataFrame.iloc

Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

  • An integer, e.g. 5.
  • A list or array of integers, e.g. [4, 3, 0].
  • A slice object with ints, e.g. 1:7.
  • A boolean array.
  • A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.
  • A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1).

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

DataFrame.sum(axis=0, skipna=True, numeric_only=False, min_count=0, **kwargs)

Return the sum of the values over the requested axis.

This is equivalent to the method numpy.sum.

DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)

Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Here you will find many more methods and math functions.

import pandas as pd
import numpy as np

index = pd.Series(["A", "B", "C", "D", "E"])

rng = np.random.default_rng()

np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index)

np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index)

data_1.name = "Alpha"
data_2.name = "Beta"

data_3 = pd.concat([data_1, data_2], axis=1)

print(data_3)
print()
print(data_3.loc[["A", "D"]])
print()
print(data_3.loc[data_3["Alpha"] > 0.5])
print()
print(data_3["Alpha"].sum())
print()
print(data_3["Alpha"].cumsum())
print()
print(data_3.iloc[[0, 3]])
print()
print(data_3.iloc[[0, 3]].Alpha)

Output

A  0.161057  0.448543
B  0.503980  0.384337
C  0.747554  0.434789
D  0.963156  0.451778
E  0.666598  0.416983

      Alpha      Beta
A  0.161057  0.448543
D  0.963156  0.451778

      Alpha      Beta
B  0.503980  0.384337
C  0.747554  0.434789
D  0.963156  0.451778
E  0.666598  0.416983

3.042345395250818

A    0.161057
B    0.665037
C    1.412591
D    2.375747
E    3.042345
Name: Alpha, dtype: float64

      Alpha      Beta
A  0.161057  0.448543
D  0.963156  0.451778

A    0.161057
D    0.963156
Name: Alpha, dtype: float64

more loc and pandas.Series.str.contains

Series.str.contains(pat, case=True, flags=0, na=None, regex=True)

Test if pattern or regex is contained within a string of a Series or Index.

Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index.

import pandas as pd
import numpy as np

index = pd.Series(["A", "B", "C", "D", "E"])

rng = np.random.default_rng()

np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index)

np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index)

data_1.name = "Alpha"
data_2.name = "Beta"

data_3 = pd.concat([data_1, data_2], axis=1)

print(data_3)
print()

selection_criteria = (data_3.Alpha / data_3.Beta) ** 2

print(data_3.loc[(selection_criteria > 0.2) & (selection_criteria < 0.6)])
print()

data_4 = data_3.loc[data_3.index.str.contains("C")]
print(data_4)
print(len(data_4))  # -> 1
print(data_4.shape)  # -> (1,2)

Output:

      Alpha      Beta
A  0.044988  0.474368
B  0.740702  0.148857
C  0.986308  0.710327
D  0.284805  0.735718
E  0.910790  0.410208

Empty DataFrame
Columns: [Alpha, Beta]
Index: []

      Alpha      Beta
C  0.986308  0.710327

Other functions

Sort:​

New_Data = Data.sort_values(by="ColumnName", ascending=False)

Give me the first or last 5 rows:​

Data.head()
Data.tail()

Insert column:​

Data.insert(loc = 1, column = 'NewColumnName', value = NewColumnData)

NewColumnData is e.g. a pandas.Series.

Transpose matrix:​

Data_Tranposed = Data.T

Nesty structures:​

You can create nested structures…​ But do you really want to?

Saving (pandas.DataFrame.to_pickle) / loading (pandas.read_pickle) data ‘natively’​

Save:

import pandas as pd
original_df = pd.DataFrame(
    {"foo": range(5), "bar": range(5, 10)}
   )  
print(original_df)

pd.to_pickle(original_df, "./dummy.pkl")

Output:

   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9

Load:

import pandas as pd
unpickled_df = pd.read_pickle("./dummy.pkl")  
print(unpickled_df)

Output:

   foo  bar
0    0    5
1    1    6
2    2    7
3    3    8
4    4    9

read

pandas.read_pickle(filepath_or_buffer, compression='infer', storage_options=None)

Load pickled pandas object (or any object) from file.

write

DataFrame.to_pickle(path, compression='infer', protocol=5, storage_options=None)

Pickle (serialize) object to file.

I/O operations​

 
Pickling
Flat file
Clipboard
Excel
JSON
HTML
XML
Latex
HDFStore: PyTables (HDF5)
Feather
Parquet
ORC
SAS
SPSS
SQL
Google BigQuery
STATA

csv (“comma” separated values file)​

read

pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=_NoDefault.no_default, keep_date_col=False, date_parser=_NoDefault.no_default, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=_NoDefault.no_default)

Read a comma-separated values (csv) file into DataFrame.

write

DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', lineterminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors='strict', storage_options=None)

Write object to a comma-separated values (csv) file.

Excel​

read

pandas.read_excel(io, sheet_name=0, *, header=0, names=None, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_parser=_NoDefault.no_default, date_format=None, thousands=None, decimal='.', comment=None, skipfooter=0, storage_options=None, dtype_backend=_NoDefault.no_default, engine_kwargs=None)

Read an Excel file into a pandas DataFrame.

Supports xls, xlsx, xlsm, xlsb, odf, ods and odt file extensions read from a local filesystem or URL. Supports an option to read a single sheet or a list of sheets.

write

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, inf_rep='inf', freeze_panes=None, storage_options=None, engine_kwargs=None)

Write object to an Excel sheet.

To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.

Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.

JSON

read

pandas.read_json(path_or_buf, *, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, precise_float=False, date_unit=None, encoding=None, encoding_errors='strict', lines=False, chunksize=None, compression='infer', nrows=None, storage_options=None, dtype_backend=_NoDefault.no_default, engine='ujson')

Convert a JSON string to pandas object.

write

DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=None, indent=None, storage_options=None, mode='w')

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

The source code is Open Source and can be found on GitHub.