Functions
The goal
A function allows to seperate a part of the code in a logical module that can be reused.
Questions to David Rotermund
Logic blocks need to be indented. Preferable with 4 spaces!
Most simple function
These three functions are equivalent:
def my_function():
pass
def my_function():
return
def my_function():
return None
return leaves the current function call with the expression list (or None) as return value.
There is a return at the end, even if you don’t put it there.
def
funcdef ::= [decorators] "def" funcname [type_params] "(" [parameter_list] ")"
["->" expression] ":" suite
decorators ::= decorator+
decorator ::= "@" assignment_expression NEWLINE
parameter_list ::= defparameter ("," defparameter)* "," "/" ["," [parameter_list_no_posonly]]
| parameter_list_no_posonly
parameter_list_no_posonly ::= defparameter ("," defparameter)* ["," [parameter_list_starargs]]
| parameter_list_starargs
parameter_list_starargs ::= "*" [parameter] ("," defparameter)* ["," ["**" parameter [","]]]
| "**" parameter [","]
parameter ::= identifier [":" expression]
defparameter ::= parameter ["=" expression]
funcname ::= identifier
pass
pass_stmt ::= "pass"
pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed
return
return_stmt ::= "return" [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.
When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.
Return values
No return value
As we stated above these functions all return None:
def my_function():
pass
def my_function():
return
def my_function():
return None
One return value
These functions return one value:
def my_function():
return 1
def my_function():
return "Hello"
def my_function():
return (1+1)/1
e.g.
def my_function():
return 1
print(my_function())
Many return values
def my_function():
return 2, "A", 79, 3.1314
print(my_function()) # -> (2, 'A', 79, 3.1314)
abcd = my_function() # -> (2, 'A', 79, 3.1314)
print(abcd) # -> (2, 'A', 79, 3.1314)
a, b, c, d = my_function()
print(a) # -> 2
print(b) # -> A
print(c) # -> 79
print(d) # -> 3.1314
a, b, c = my_function() # ValueError: too many values to unpack (expected 3)
Functions are objects
Functions are objects. Without () at the end, you interact with the function. With the () you use the function:
def my_function():
return 1
print(my_function) # -> <function my_function at 0x7f956166a520>
print(my_function()) # -> 1
Interesting, but why do I need to know this? Good question, imaginary person! We can use functions as “parameters” via arguments for other functions:
def my_function_0():
return 3
def my_function_1():
return 2
def my_function_2(func):
return func() ** 2
print(my_function_2(my_function_0)) # -> 9
print(my_function_2(my_function_1)) # -> 4
Default Argument Values
We can define a default value for arguments:
def my_function(a=2, b=7, c=5, d=8):
return a + b**2 + c**3 + d**4
print(my_function()) # -> 4272
We can (partially) overwrite the default values:
def my_function(a=2, b=7, c=5, d=8):
return a + b**2 + c**3 + d**4
print(my_function(b=2,a=3)) # -> 4228
print(my_function(d=7)) # -> 2577
print(my_function(3,2)) # -> 4228
print(my_function(3,b=2)) # -> 4228
print(my_function(b=2,3)) # SyntaxError: positional argument follows keyword argument
In the case of my_function(3,2), the default values are replaced in the order the arguments of the function are defined. a,b,c, and finally d. When using the keyword e.g. d. Then I can overwrite only selected arguments.
Important warning – Mutable objects
Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable object such as a list, dictionary, or instances of most classes.
Deadly:
def f(a, L=[]):
L.append(a)
return L
print(f(1)) # -> [1]
print(f(2)) # -> [1, 2]
print(f(3)) # -> [1, 2, 3]
Correct:
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
print(f(1)) # -> [1]
print(f(2)) # -> [2]
print(f(3)) # -> [3]
Mutable arguments don’t need return values
def f(x):
x.append(1)
y = []
f(y)
print(y)
Arguments: Positional and Keywords
A function definition may look like:
def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only
This is the typical case:
Positional-or-Keyword Arguments
If / and * are not present in the function definition, arguments may be passed to a function by position or by keyword.
This is an optional topic!
Functions can also be called using keyword arguments of the form kwarg=value.
This is an optional topic!
If positional-only, the parameters’ order matters, and the parameters cannot be passed by keyword.
If there is no / in the function definition, there are no positional-only parameters.
This is an optional topic!
To mark parameters as keyword-only, indicating the parameters must be passed by keyword argument, place an * in the arguments list just before the first keyword-only parameter.
Arbitrary Argument Lists
def f(p1, *arguments, **keywords):
print("p1:")
print(p1)
print()
print("*arguments")
for arg in arguments:
print(arg)
print()
print("**keywords")
for kw in keywords:
print(f"{kw}: {keywords[kw]}")
print()
f(1, 2, 3, a=4, b=5)
Output:
p1:
1
*arguments
2
3
**keywords
a: 4
b: 5
Unpacking Argument Lists
def f(a: int, b: int, c: int, d: int) -> int:
return a * b * c * d
print(f(2, 3, 4, 5)) # -> 120
my_list_a = [2, 3, 4]
my_list_b = [2, 3, 4, 5]
my_list_c = [3, 4, 5]
print(f(*my_list_a, 5)) # -> 120 (plus a false warning: 'Too many arguments for "f"' from MyPy)
print(f(*my_list_b)) # -> 120
print(f(2, *my_list_c)) # -> 120
my_tuple_c = [3, 4, 5]
print(f(2, *my_tuple_c)) # -> 120
Documentation strings
def my_function():
"""This is a universal function.
It does nothing."""
pass
help(my_function)
Output:
Help on function my_function in module __main__:
my_function()
This is a universal function.
It does nothing.
One liner:
def my_function():
"""This is a universal function."""
pass
Novelization:
def my_function():
"""This is a universal function.
a
b
d
end"""
pass
Lambda expressions / anonymous functions
lambda_expr ::= "lambda" [parameter_list] ":" expression
Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda parameters: expression yields a function object. The unnamed object behaves like a function object defined with:
def <lambda>(parameters):
return expression
Example 1:
pairs = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
def f(x):
return x[1]
print(pairs) # -> [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
print((lambda x: x[1])(pairs)) # -> (2, 'two')
print(f(pairs)) # -> (2, 'two')
Example 2:
With a normal function:
pairs = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
def f(x):
return x[1]
print(pairs) # -> [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
pairs.sort(key=f)
print(pairs) # -> [(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
pairs = [(1, "one"), (2, "two"), (3, "three"), (4, "four")]
print(pairs) # -> [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
pairs.sort(key=(lambda x: x[1]))
print(pairs) # -> [(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
Small warning:
print(pairs.sort()) # -> None
because .sort() is an inplace function.
The source code is Open Source and can be found on GitHub.