Your own layer
Top
Questions to David Rotermund
Writing a layer based on linear
I am rewriting the code for Linear as my own layer.
__init__() : It contains a tensor for the weights and optionally a second tensor for the bias. Both tensors are wrapped within the torch.nn.Parameter class. This is necessary, otherwise the optimizer will not find them. Afterwards the tensors will be initialized via reset_parameters(self).
reset_parameters(): I copied it from the original code. Doesn’t need to be there could also be handled directly in the init.
forward(): We get an input tensor and need to produce an output tensor. Please remember that dimension 0 contains the batch. Here we just multiply the input with the weights and add the bias to it (if available).
extra_repr(): Prints the information about the layer in a nice fashion.
import torch
import math
class MyOwnLayer(torch.nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
) -> None:
super().__init__()
assert in_features > 0
assert out_features > 0
self.in_features: int = in_features
self.out_features: int = out_features
self.weight = torch.nn.Parameter(
torch.empty(
(out_features, in_features),
)
)
if bias:
self.bias = torch.nn.Parameter(
torch.empty(
out_features,
)
)
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
torch.nn.init.uniform_(self.bias, -bound, bound)
def forward(
self,
input: torch.Tensor,
) -> torch.Tensor:
output = (self.weight.unsqueeze(0) * input.unsqueeze(1)).sum(dim=-1)
if self.bias is not None:
output = output + self.bias.unsqueeze(0)
return output
def extra_repr(self) -> str:
return f"in_features={self.in_features}, out_features={self.out_features}, bias={self.bias is not None}"
I just add it to the networs as any other layer:
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
MyOwnLayer(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_output,
bias=True,
),
torch.nn.Softmax(dim=1),
).to(device=device_gpu)
We can print information as usual:
print(network[-4])
Output:
MyOwnLayer(in_features=576, out_features=1024, bias=True)
We can check the stored parameters:
for parameter in network[-4].parameters():
print(type(parameter), parameter.shape)
print()
for name, parameter in network[-4].named_parameters():
print(name, type(parameter), parameter.shape)
Output:
<class 'torch.nn.parameter.Parameter'> torch.Size([1024, 576])
<class 'torch.nn.parameter.Parameter'> torch.Size([1024])
weight <class 'torch.nn.parameter.Parameter'> torch.Size([1024, 576])
bias <class 'torch.nn.parameter.Parameter'> torch.Size([1024])
And train the network as usual:
The source code is Open Source and can be found on GitHub.