FastICA

The goal

Questions to David Rotermund

Test data

We rotate the blue dots with ​a non-orthogonal rotation matrix into the red dots.​

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(1)

a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)

b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)

data = np.concatenate((data_a, data_b), axis=0)

angle_x = -0.3
angle_y = 0.3

roation_matrix = np.array(
    [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix

plt.plot(data[:, 0], data[:, 1], "b.")
plt.plot(data_r[:, 0], data_r[:, 1], "r.")
plt.show()

image0

Train and use FastICA​

class sklearn.decomposition.FastICA(n_components=None, *, algorithm='parallel', whiten='unit-variance', fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, whiten_solver='svd', random_state=None)

FastICA: a fast algorithm for Independent Component Analysis.

The implementation is based on 1.

fit(X, y=None)

Fit the model to X.

X : array-like of shape (n_samples, n_features)

Training data, where n_samples is the number of samples and n_features is the number of features.

transform(X, copy=True)

Recover the sources from X (apply the unmixing matrix).

X : array-like of shape (n_samples, n_features)

Data to transform, where n_samples is the number of samples and n_features is the number of features.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA

rng = np.random.default_rng(1)

a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)

b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)

data = np.concatenate((data_a, data_b), axis=0)

angle_x = -0.3
angle_y = 0.3

roation_matrix = np.array(
    [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix

# Train
ica = FastICA(n_components=2)
ica.fit(data_r)

# Use
transformed_data = ica.transform(data_r)

plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
plt.show()

image1

Use FastICA to transform the un-rotated data

inverse_transform(X, copy=True)

Transform the sources back to the mixed data (apply mixing matrix). X : array-like of shape (n_samples, n_components)

Sources, where n_samples is the number of samples and n_components is the number of components.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA

rng = np.random.default_rng(1)

a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)

b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)

data = np.concatenate((data_a, data_b), axis=0)

angle_x = -0.3
angle_y = 0.3

roation_matrix = np.array(
    [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix

# Train
ica = FastICA(n_components=2)
ica.fit(data_r)

# Use
transformed_data = ica.inverse_transform(data)

plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
plt.show()

image2

Inspect the extracted coordinate system​

components_ : ndarray of shape (n_components, n_features)

The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_) when whiten is True.

Be aware that the sign of any axis can switch !!!​ Like it happend in this example:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA

rng = np.random.default_rng(1)

a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)

b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)

data = np.concatenate((data_a, data_b), axis=0)

angle_x = -0.3
angle_y = 0.3

roation_matrix = np.array(
    [[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix

# Train
ica = FastICA(n_components=2)
ica.fit(data_r)

plt.plot([-ica.components_.max(), ica.components_.max()], [0, 0], "k")
plt.plot([0, 0], [-ica.components_.max(), ica.components_.max()], "k")

plt.plot(
    [-ica.components_[0, 0], ica.components_[0, 0]],
    [-ica.components_[0, 1], ica.components_[0, 1]],
    "m",
)

plt.plot(
    [-ica.components_[1, 0], ica.components_[1, 0]],
    [-ica.components_[1, 1], ica.components_[1, 1]],
    "c",
)

plt.show()

image3

Fast ICA Methods

   
fit(X[, y]) Fit the model to X.
fit_transform(X[, y]) Fit the model and recover the sources from X.
get_feature_names_out([input_features]) Get output feature names for transformation.
get_metadata_routing() Get metadata routing of this object.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Transform the sources back to the mixed data (apply mixing matrix).
set_inverse_transform_request(*[, copy]) Request metadata passed to the inverse_transform method.
set_output(*[, transform]) Set output container.
set_params(**params) Set the parameters of this estimator.
set_transform_request(*[, copy]) Request metadata passed to the transform method.
transform(X[, copy]) Recover the sources from X (apply the unmixing matrix).

Fast ICA Attributes

components_ : ndarray of shape (n_components, n_features)

The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_) when whiten is True.

mixing_ : ndarray of shape (n_features, n_components)

The pseudo-inverse of components_. It is the linear operator that maps independent sources to the data.

mean_ : ndarray of shape(n_features,)

The mean over features. Only set if self.whiten is True.

n_features_in_ : int

Number of features seen during fit.

feature_names_in_ : ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

n_iter_ : int

If the algorithm is “deflation”, n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge.

whitening_ : ndarray of shape (n_components, n_features)

Only set if whiten is ‘True’. This is the pre-whitening matrix that projects data onto the first n_components principal components.

The source code is Open Source and can be found on GitHub.