Overview

The goal

scikit-learn is a machine learning tool kit for data analysis.

Questions to David Rotermund

pip install scikit-learn
  • Simple and efficient tools for predictive data analysis
  • Accessible to everybody, and reusable in various contexts
  • Built on NumPy, SciPy, and matplotlib

I will keep it short and I will mark the most relevant tools in bold

sklearn.base: Base classes and utility functions

see here

sklearn.calibration: Probability Calibration

   
calibration.CalibratedClassifierCV([…]) Probability calibration with isotonic regression or logistic regression.
calibration.calibration_curve(y_true, y_prob, *) Compute true and predicted probabilities for a calibration curve.

sklearn.cluster: Clustering

Classes

   
cluster.AffinityPropagation(*[, damping, …]) Perform Affinity Propagation Clustering of data.
cluster.AgglomerativeClustering([…]) Agglomerative Clustering.
cluster.Birch(*[, threshold, …]) Implements the BIRCH clustering algorithm.
cluster.DBSCAN([eps, min_samples, metric, …]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.HDBSCAN([min_cluster_size, …]) Cluster data using hierarchical density-based clustering.
cluster.FeatureAgglomeration([n_clusters, …]) Agglomerate features.
cluster.KMeans([n_clusters, init, n_init, …]) K-Means clustering.
cluster.BisectingKMeans([n_clusters, init, …]) Bisecting K-Means clustering.
cluster.MiniBatchKMeans([n_clusters, init, …]) Mini-Batch K-Means clustering.
cluster.MeanShift(*[, bandwidth, seeds, …]) Mean shift clustering using a flat kernel.
cluster.OPTICS(*[, min_samples, max_eps, …]) Estimate clustering structure from vector array.
cluster.SpectralClustering([n_clusters, …]) Apply clustering to a projection of the normalized Laplacian.
cluster.SpectralBiclustering([n_clusters, …]) Spectral biclustering (Kluger, 2003).
cluster.SpectralCoclustering([n_clusters, …]) Spectral Co-Clustering algorithm (Dhillon, 2001).

Functions

   
cluster.affinity_propagation(S, *[, …]) Perform Affinity Propagation Clustering of data.
cluster.cluster_optics_dbscan(*, …) Perform DBSCAN extraction for an arbitrary epsilon.
cluster.cluster_optics_xi(*, reachability, …) Automatically extract clusters according to the Xi-steep method.
cluster.compute_optics_graph(X, *, …) Compute the OPTICS reachability graph.
cluster.dbscan(X[, eps, min_samples, …]) Perform DBSCAN clustering from vector array or distance matrix.
cluster.estimate_bandwidth(X, *[, quantile, …]) Estimate the bandwidth to use with the mean-shift algorithm.
cluster.k_means(X, n_clusters, *[, …]) Perform K-means clustering algorithm.
cluster.kmeans_plusplus(X, n_clusters, *[, …]) Init n_clusters seeds according to k-means++.
cluster.mean_shift(X, *[, bandwidth, seeds, …]) Perform mean shift clustering of data using a flat kernel.
cluster.spectral_clustering(affinity, *[, …]) Apply clustering to a projection of the normalized Laplacian.
cluster.ward_tree(X, *[, connectivity, …]) Ward clustering based on a Feature matrix.

sklearn.compose: Composite Estimators

   
compose.ColumnTransformer(transformers, *[, …]) Applies transformers to columns of an array or pandas DataFrame.
compose.TransformedTargetRegressor([…]) Meta-estimator to regress on a transformed target.
compose.make_column_transformer(*transformers) Construct a ColumnTransformer from the given transformers.
compose.make_column_selector([pattern, …]) Create a callable to select columns to be used with ColumnTransformer.

sklearn.covariance: Covariance Estimators

   
covariance.EmpiricalCovariance(*[, …]) Maximum likelihood covariance estimator.
covariance.EllipticEnvelope(*[, …]) An object for detecting outliers in a Gaussian distributed dataset.
covariance.GraphicalLasso([alpha, mode, …]) Sparse inverse covariance estimation with an l1-penalized estimator.
covariance.GraphicalLassoCV(*[, alphas, …]) Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
covariance.LedoitWolf(*[, store_precision, …]) LedoitWolf Estimator.
covariance.MinCovDet(*[, store_precision, …]) Minimum Covariance Determinant (MCD): robust estimator of covariance.
covariance.OAS(*[, store_precision, …]) Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].
covariance.ShrunkCovariance(*[, …]) Covariance estimator with shrinkage.
covariance.empirical_covariance(X, *[, …]) Compute the Maximum likelihood covariance estimator.
covariance.graphical_lasso(emp_cov, alpha, *) L1-penalized covariance estimator.
covariance.ledoit_wolf(X, *[, …]) Estimate the shrunk Ledoit-Wolf covariance matrix.
covariance.ledoit_wolf_shrinkage(X[, …]) Estimate the shrunk Ledoit-Wolf covariance matrix.
covariance.oas(X, *[, assume_centered]) Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].
covariance.shrunk_covariance(emp_cov[, …]) Calculate a covariance matrix shrunk on the diagonal.

sklearn.cross_decomposition: Cross decomposition

   
cross_decomposition.CCA([n_components, …]) Canonical Correlation Analysis, also known as “Mode B” PLS.
cross_decomposition.PLSCanonical([…]) Partial Least Squares transformer and regressor.
cross_decomposition.PLSRegression([…]) PLS regression.
cross_decomposition.PLSSVD([n_components, …]) Partial Least Square SVD.

sklearn.datasets: Datasets

see here

sklearn.decomposition: Matrix Decomposition

   
decomposition.DictionaryLearning([…]) Dictionary learning.
decomposition.FactorAnalysis([n_components, …]) Factor Analysis (FA).
decomposition.FastICA([n_components, …]) FastICA: a fast algorithm for Independent Component Analysis.
decomposition.IncrementalPCA([n_components, …]) Incremental principal components analysis (IPCA).
decomposition.KernelPCA([n_components, …]) Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].
decomposition.LatentDirichletAllocation([…]) Latent Dirichlet Allocation with online variational Bayes algorithm.
decomposition.MiniBatchDictionaryLearning([…]) Mini-batch dictionary learning.
decomposition.MiniBatchSparsePCA([…]) Mini-batch Sparse Principal Components Analysis.
decomposition.NMF([n_components, init, …]) Non-Negative Matrix Factorization (NMF).
decomposition.MiniBatchNMF([n_components, …]) Mini-Batch Non-Negative Matrix Factorization (NMF).
decomposition.PCA([n_components, copy, …]) Principal component analysis (PCA).
decomposition.SparsePCA([n_components, …]) Sparse Principal Components Analysis (SparsePCA).
decomposition.SparseCoder(dictionary, *[, …]) Sparse coding.
decomposition.TruncatedSVD([n_components, …]) Dimensionality reduction using truncated SVD (aka LSA).
decomposition.dict_learning(X, n_components, …) Solve a dictionary learning matrix factorization problem.
decomposition.dict_learning_online(X[, …]) Solve a dictionary learning matrix factorization problem online.
decomposition.fastica(X[, n_components, …]) Perform Fast Independent Component Analysis.
decomposition.non_negative_factorization(X) Compute Non-negative Matrix Factorization (NMF).
decomposition.sparse_encode(X, dictionary, *) Sparse coding.

sklearn.discriminant_analysis: Discriminant Analysis

   
discriminant_analysis.LinearDiscriminantAnalysis([…]) Linear Discriminant Analysis.
discriminant_analysis.QuadraticDiscriminantAnalysis(*) Quadratic Discriminant Analysis.

sklearn.dummy: Dummy estimators

   
dummy.DummyClassifier(*[, strategy, …]) DummyClassifier makes predictions that ignore the input features.
dummy.DummyRegressor(*[, strategy, …]) Regressor that makes predictions using simple rules.

sklearn.ensemble: Ensemble Methods

   
ensemble.AdaBoostClassifier([estimator, …]) An AdaBoost classifier.
ensemble.AdaBoostRegressor([estimator, …]) An AdaBoost regressor.
ensemble.BaggingClassifier([estimator, …]) A Bagging classifier.
ensemble.BaggingRegressor([estimator, …]) A Bagging regressor.
ensemble.ExtraTreesClassifier([…]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, …]) An extra-trees regressor.
ensemble.GradientBoostingClassifier(*[, …]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor(*[, …]) Gradient Boosting for regression.
ensemble.IsolationForest(*[, n_estimators, …]) Isolation Forest Algorithm.
ensemble.RandomForestClassifier([…]) A random forest classifier.
ensemble.RandomForestRegressor([…]) A random forest regressor.
ensemble.RandomTreesEmbedding([…]) An ensemble of totally random trees.
ensemble.StackingClassifier(estimators[, …]) Stack of estimators with a final classifier.
ensemble.StackingRegressor(estimators[, …]) Stack of estimators with a final regressor.
ensemble.VotingClassifier(estimators, *[, …]) Soft Voting/Majority Rule classifier for unfitted estimators.
ensemble.VotingRegressor(estimators, *[, …]) Prediction voting regressor for unfitted estimators.
ensemble.HistGradientBoostingRegressor([…]) Histogram-based Gradient Boosting Regression Tree.
ensemble.HistGradientBoostingClassifier([…]) Histogram-based Gradient Boosting Classification Tree.

sklearn.exceptions: Exceptions and warnings

see here

sklearn.experimental: Experimental

see here

sklearn.feature_extraction: Feature Extraction

   
feature_extraction.DictVectorizer(*[, …]) Transforms lists of feature-value mappings to vectors.
feature_extraction.FeatureHasher([…]) Implements feature hashing, aka the hashing trick.

From images

   
feature_extraction.image.extract_patches_2d(…) Reshape a 2D image into a collection of patches.
feature_extraction.image.grid_to_graph(n_x, n_y) Graph of the pixel-to-pixel connections.
feature_extraction.image.img_to_graph(img, *) Graph of the pixel-to-pixel gradient connections.
feature_extraction.image.reconstruct_from_patches_2d(…) Reconstruct the image from all of its patches.
feature_extraction.image.PatchExtractor(*[, …]) Extracts patches from a collection of images.

From text

   
feature_extraction.text.CountVectorizer(*[, …]) Convert a collection of text documents to a matrix of token counts.
feature_extraction.text.HashingVectorizer(*) Convert a collection of text documents to a matrix of token occurrences.
feature_extraction.text.TfidfTransformer(*) Transform a count matrix to a normalized tf or tf-idf representation.
feature_extraction.text.TfidfVectorizer(*[, …]) Convert a collection of raw documents to a matrix of TF-IDF features.

sklearn.feature_selection: Feature Selection

   
feature_selection.GenericUnivariateSelect([…]) Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([…]) Select features according to a percentile of the highest scores.
feature_selection.SelectKBest([score_func, k]) Select features according to the k highest scores.
feature_selection.SelectFpr([score_func, alpha]) Filter: Select the pvalues below alpha based on a FPR test.
feature_selection.SelectFdr([score_func, alpha]) Filter: Select the p-values for an estimated false discovery rate.
feature_selection.SelectFromModel(estimator, *) Meta-transformer for selecting features based on importance weights.
feature_selection.SelectFwe([score_func, alpha]) Filter: Select the p-values corresponding to Family-wise error rate.
feature_selection.SequentialFeatureSelector(…) Transformer that performs Sequential Feature Selection.
feature_selection.RFE(estimator, *[, …]) Feature ranking with recursive feature elimination.
feature_selection.RFECV(estimator, *[, …]) Recursive feature elimination with cross-validation to select features.
feature_selection.VarianceThreshold([threshold]) Feature selector that removes all low-variance features.
feature_selection.chi2(X, y) Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y) Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y, *[, …]) Univariate linear regression tests returning F-statistic and p-values.
feature_selection.r_regression(X, y, *[, …]) Compute Pearson’s r for each features and the target.
feature_selection.mutual_info_classif(X, y, *) Estimate mutual information for a discrete target variable.
feature_selection.mutual_info_regression(X, y, *) Estimate mutual information for a continuous target variable.

sklearn.gaussian_process: Gaussian Processes

   
gaussian_process.GaussianProcessClassifier([…]) Gaussian process classification (GPC) based on Laplace approximation.
gaussian_process.GaussianProcessRegressor([…]) Gaussian process regression (GPR).

Kernels

   
gaussian_process.kernels.CompoundKernel(kernels) Kernel which is composed of a set of other kernels.
gaussian_process.kernels.ConstantKernel([…]) Constant kernel.
gaussian_process.kernels.DotProduct([…]) Dot-Product kernel.
gaussian_process.kernels.ExpSineSquared([…]) Exp-Sine-Squared kernel (aka periodic kernel).
gaussian_process.kernels.Exponentiation(…) The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via
gaussian_process.kernels.Hyperparameter(…) A kernel hyperparameter’s specification in form of a namedtuple.
gaussian_process.kernels.Kernel() Base class for all kernels.
gaussian_process.kernels.Matern([…]) Matern kernel.
gaussian_process.kernels.PairwiseKernel([…]) Wrapper for kernels in sklearn.metrics.pairwise.
gaussian_process.kernels.Product(k1, k2) The Product kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.RBF([length_scale, …]) Radial basis function kernel (aka squared-exponential kernel).
gaussian_process.kernels.RationalQuadratic([…]) Rational Quadratic kernel.
gaussian_process.kernels.Sum(k1, k2) The Sum kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.WhiteKernel([…]) White kernel.

sklearn.impute: Impute

   
impute.SimpleImputer(*[, missing_values, …]) Univariate imputer for completing missing values with simple strategies.
impute.IterativeImputer([estimator, …]) Multivariate imputer that estimates each feature from all the others.
impute.MissingIndicator(*[, missing_values, …]) Binary indicators for missing values.
impute.KNNImputer(*[, missing_values, …]) Imputation for completing missing values using k-Nearest Neighbors.

sklearn.inspection: Inspection

   
inspection.partial_dependence(estimator, X, …) Partial dependence of features.
inspection.permutation_importance(estimator, …) Permutation importance for feature evaluation [Rd9e56ef97513-BRE].

Plotting

   
inspection.DecisionBoundaryDisplay(*, xx0, …) Decisions boundary visualization.
inspection.PartialDependenceDisplay(…[, …]) Partial Dependence Plot (PDP).

sklearn.isotonic: Isotonic regression

   
isotonic.IsotonicRegression(*[, y_min, …]) Isotonic regression model.
isotonic.check_increasing(x, y) Determine whether y is monotonically correlated with x.
isotonic.isotonic_regression(y, *[, …]) Solve the isotonic regression model.

sklearn.kernel_approximation: Kernel Approximation

   
kernel_approximation.AdditiveChi2Sampler(*) Approximate feature map for additive chi2 kernel.
kernel_approximation.Nystroem([kernel, …]) Approximate a kernel map using a subset of the training data.
kernel_approximation.PolynomialCountSketch(*) Polynomial kernel approximation via Tensor Sketch.
kernel_approximation.RBFSampler(*[, gamma, …]) Approximate a RBF kernel feature map using random Fourier features.
kernel_approximation.SkewedChi2Sampler(*[, …]) Approximate feature map for “skewed chi-squared” kernel.

sklearn.kernel_ridge: Kernel Ridge Regression

   
kernel_ridge.KernelRidge([alpha, kernel, …]) Kernel ridge regression.

sklearn.linear_model: Linear Models

Linear classifiers

   
linear_model.LogisticRegression([penalty, …]) Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.LogisticRegressionCV(*[, Cs, …]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.PassiveAggressiveClassifier(*) Passive Aggressive Classifier.
linear_model.Perceptron(*[, penalty, alpha, …]) Linear perceptron classifier.
linear_model.RidgeClassifier([alpha, …]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV([alphas, …]) Ridge classifier with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty, …]) Linear classifiers (SVM, logistic regression, etc.) with SGD training.
linear_model.SGDOneClassSVM([nu, …]) Solves linear One-Class SVM using Stochastic Gradient Descent.

Classical linear regressors

   
linear_model.LinearRegression(*[, …]) Ordinary least squares Linear Regression.
linear_model.Ridge([alpha, fit_intercept, …]) Linear least squares with l2 regularization.
linear_model.RidgeCV([alphas, …]) Ridge regression with built-in cross-validation.
linear_model.SGDRegressor([loss, penalty, …]) Linear model fitted by minimizing a regularized empirical loss with SGD.

Regressors with variable selection

   
linear_model.ElasticNet([alpha, l1_ratio, …]) Linear regression with combined L1 and L2 priors as regularizer.
linear_model.ElasticNetCV(*[, l1_ratio, …]) Elastic Net model with iterative fitting along a regularization path.
linear_model.Lars(*[, fit_intercept, …]) Least Angle Regression model a.k.a.
linear_model.LarsCV(*[, fit_intercept, …]) Cross-validated Least Angle Regression model.
linear_model.Lasso([alpha, fit_intercept, …]) Linear Model trained with L1 prior as regularizer (aka the Lasso).
linear_model.LassoCV(*[, eps, n_alphas, …]) Lasso linear model with iterative fitting along a regularization path.
linear_model.LassoLars([alpha, …]) Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV(*[, fit_intercept, …]) Cross-validated Lasso, using the LARS algorithm.
linear_model.LassoLarsIC([criterion, …]) Lasso model fit with Lars using BIC or AIC for model selection.
linear_model.OrthogonalMatchingPursuit(*[, …]) Orthogonal Matching Pursuit model (OMP).
linear_model.OrthogonalMatchingPursuitCV(*) Cross-validated Orthogonal Matching Pursuit model (OMP).

Bayesian regressors

   
linear_model.ARDRegression(*[, max_iter, …]) Bayesian ARD regression.
linear_model.BayesianRidge(*[, max_iter, …]) Bayesian ridge regression.

Multi-task linear regressors with variable selection

   
linear_model.MultiTaskElasticNet([alpha, …]) Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
linear_model.MultiTaskElasticNetCV(*[, …]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.MultiTaskLasso([alpha, …]) Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
linear_model.MultiTaskLassoCV(*[, eps, …]) Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

Outlier-robust regressors

   
linear_model.HuberRegressor(*[, epsilon, …]) L2-regularized linear regression model that is robust to outliers.
linear_model.QuantileRegressor(*[, …]) Linear regression model that predicts conditional quantiles.
linear_model.RANSACRegressor([estimator, …]) RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.TheilSenRegressor(*[, …]) Theil-Sen Estimator: robust multivariate regression model.

Generalized linear models (GLM) for regression

   
linear_model.PoissonRegressor(*[, alpha, …]) Generalized Linear Model with a Poisson distribution.
linear_model.TweedieRegressor(*[, power, …]) Generalized Linear Model with a Tweedie distribution.
linear_model.GammaRegressor(*[, alpha, …]) Generalized Linear Model with a Gamma distribution.

Miscellaneous

   
linear_model.PassiveAggressiveRegressor(*[, …]) Passive Aggressive Regressor.
linear_model.enet_path(X, y, *[, l1_ratio, …]) Compute elastic net path with coordinate descent.
linear_model.lars_path(X, y[, Xy, Gram, …]) Compute Least Angle Regression or Lasso path using the LARS algorithm [1].
linear_model.lars_path_gram(Xy, Gram, *, …) The lars_path in the sufficient stats mode [1].
linear_model.lasso_path(X, y, *[, eps, …]) Compute Lasso path with coordinate descent.
linear_model.orthogonal_mp(X, y, *[, …]) Orthogonal Matching Pursuit (OMP).
linear_model.orthogonal_mp_gram(Gram, Xy, *) Gram Orthogonal Matching Pursuit (OMP).
linear_model.ridge_regression(X, y, alpha, *) Solve the ridge equation by the method of normal equations.

sklearn.manifold: Manifold Learning

   
manifold.Isomap(*[, n_neighbors, radius, …]) Isomap Embedding.
manifold.LocallyLinearEmbedding(*[, …]) Locally Linear Embedding.
manifold.MDS([n_components, metric, n_init, …]) Multidimensional scaling.
manifold.SpectralEmbedding([n_components, …]) Spectral embedding for non-linear dimensionality reduction.
manifold.TSNE([n_components, perplexity, …]) T-distributed Stochastic Neighbor Embedding.
manifold.locally_linear_embedding(X, *, …) Perform a Locally Linear Embedding analysis on the data.
manifold.smacof(dissimilarities, *[, …]) Compute multidimensional scaling using the SMACOF algorithm.
manifold.spectral_embedding(adjacency, *[, …]) Project the sample on the first eigenvectors of the graph Laplacian.
manifold.trustworthiness(X, X_embedded, *[, …]) Indicate to what extent the local structure is retained.

sklearn.metrics: Metrics

Model Selection Interface

   
metrics.check_scoring(estimator[, scoring, …]) Determine scorer from user options.
metrics.get_scorer(scoring) Get a scorer from string.
metrics.get_scorer_names() Get the names of all available scorers.
metrics.make_scorer(score_func, *[, …]) Make a scorer from a performance metric or loss function.

Classification metrics

   
metrics.accuracy_score(y_true, y_pred, *[, …]) Accuracy classification score.
metrics.auc(x, y) Compute Area Under the Curve (AUC) using the trapezoidal rule.
metrics.average_precision_score(y_true, …) Compute average precision (AP) from prediction scores.
metrics.balanced_accuracy_score(y_true, …) Compute the balanced accuracy.
metrics.brier_score_loss(y_true, y_prob, *) Compute the Brier score loss.
metrics.class_likelihood_ratios(y_true, …) Compute binary classification positive and negative likelihood ratios.
metrics.classification_report(y_true, y_pred, *) Build a text report showing the main classification metrics.
metrics.cohen_kappa_score(y1, y2, *[, …]) Compute Cohen’s kappa: a statistic that measures inter-annotator agreement.
metrics.confusion_matrix(y_true, y_pred, *) Compute confusion matrix to evaluate the accuracy of a classification.
metrics.dcg_score(y_true, y_score, *[, k, …]) Compute Discounted Cumulative Gain.
metrics.det_curve(y_true, y_score[, …]) Compute error rates for different probability thresholds.
metrics.f1_score(y_true, y_pred, *[, …]) Compute the F1 score, also known as balanced F-score or F-measure.
metrics.fbeta_score(y_true, y_pred, *, beta) Compute the F-beta score.
metrics.hamming_loss(y_true, y_pred, *[, …]) Compute the average Hamming loss.
metrics.hinge_loss(y_true, pred_decision, *) Average hinge loss (non-regularized).
metrics.jaccard_score(y_true, y_pred, *[, …]) Jaccard similarity coefficient score.
metrics.log_loss(y_true, y_pred, *[, eps, …]) Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred, *) Compute the Matthews correlation coefficient (MCC).
metrics.multilabel_confusion_matrix(y_true, …) Compute a confusion matrix for each class or sample.
metrics.ndcg_score(y_true, y_score, *[, k, …]) Compute Normalized Discounted Cumulative Gain.
metrics.precision_recall_curve(y_true, …) Compute precision-recall pairs for different probability thresholds.
metrics.precision_recall_fscore_support(…) Compute precision, recall, F-measure and support for each class.
metrics.precision_score(y_true, y_pred, *[, …]) Compute the precision.
metrics.recall_score(y_true, y_pred, *[, …]) Compute the recall.
metrics.roc_auc_score(y_true, y_score, *[, …]) Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
metrics.roc_curve(y_true, y_score, *[, …]) Compute Receiver operating characteristic (ROC).
metrics.top_k_accuracy_score(y_true, y_score, *) Top-k Accuracy classification score.
metrics.zero_one_loss(y_true, y_pred, *[, …]) Zero-one classification loss.

Regression metrics

   
metrics.explained_variance_score(y_true, …) Explained variance regression score function.
metrics.max_error(y_true, y_pred) The max_error metric calculates the maximum residual error.
metrics.mean_absolute_error(y_true, y_pred, *) Mean absolute error regression loss.
metrics.mean_squared_error(y_true, y_pred, *) Mean squared error regression loss.
metrics.mean_squared_log_error(y_true, y_pred, *) Mean squared logarithmic error regression loss.
metrics.median_absolute_error(y_true, y_pred, *) Median absolute error regression loss.
metrics.mean_absolute_percentage_error(…) Mean absolute percentage error (MAPE) regression loss.
metrics.r2_score(y_true, y_pred, *[, …]) R^2 (coefficient of determination) regression score function.
metrics.mean_poisson_deviance(y_true, y_pred, *) Mean Poisson deviance regression loss.
metrics.mean_gamma_deviance(y_true, y_pred, *) Mean Gamma deviance regression loss.
metrics.mean_tweedie_deviance(y_true, y_pred, *) Mean Tweedie deviance regression loss.
metrics.d2_tweedie_score(y_true, y_pred, *) D^2 regression score function, fraction of Tweedie deviance explained.
metrics.mean_pinball_loss(y_true, y_pred, *) Pinball loss for quantile regression.
metrics.d2_pinball_score(y_true, y_pred, *) D^2 regression score function, fraction of pinball loss explained.
metrics.d2_absolute_error_score(y_true, …) D^2 regression score function, fraction of absolute error explained.

Multilabel ranking metrics

   
metrics.coverage_error(y_true, y_score, *[, …]) Coverage error measure.
metrics.label_ranking_average_precision_score(…) Compute ranking-based average precision.
metrics.label_ranking_loss(y_true, y_score, *) Compute Ranking loss measure.

Clustering metrics

   
metrics.adjusted_mutual_info_score(…[, …]) Adjusted Mutual Information between two clusterings.
metrics.adjusted_rand_score(labels_true, …) Rand index adjusted for chance.
metrics.calinski_harabasz_score(X, labels) Compute the Calinski and Harabasz score.
metrics.davies_bouldin_score(X, labels) Compute the Davies-Bouldin score.
metrics.completeness_score(labels_true, …) Compute completeness metric of a cluster labeling given a ground truth.
metrics.cluster.contingency_matrix(…[, …]) Build a contingency matrix describing the relationship between labels.
metrics.cluster.pair_confusion_matrix(…) Pair confusion matrix arising from two clusterings [R9ca8fd06d29a-1].
metrics.fowlkes_mallows_score(labels_true, …) Measure the similarity of two clusterings of a set of points.
metrics.homogeneity_completeness_v_measure(…) Compute the homogeneity and completeness and V-Measure scores at once.
metrics.homogeneity_score(labels_true, …) Homogeneity metric of a cluster labeling given a ground truth.
metrics.mutual_info_score(labels_true, …) Mutual Information between two clusterings.
metrics.normalized_mutual_info_score(…[, …]) Normalized Mutual Information between two clusterings.
metrics.rand_score(labels_true, labels_pred) Rand index.
metrics.silhouette_score(X, labels, *[, …]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples(X, labels, *[, …]) Compute the Silhouette Coefficient for each sample.
metrics.v_measure_score(labels_true, …[, beta]) V-measure cluster labeling given a ground truth.

Biclustering metrics

   
metrics.consensus_score(a, b, *[, similarity]) The similarity of two sets of biclusters.

Distance metrics

   
metrics.DistanceMetric Uniform interface for fast distance metric functions.

Pairwise metrics

   
metrics.pairwise.additive_chi2_kernel(X[, Y]) Compute the additive chi-squared kernel between observations in X and Y.
metrics.pairwise.chi2_kernel(X[, Y, gamma]) Compute the exponential chi-squared kernel between X and Y.
metrics.pairwise.cosine_similarity(X[, Y, …]) Compute cosine similarity between samples in X and Y.
metrics.pairwise.cosine_distances(X[, Y]) Compute cosine distance between samples in X and Y.
metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances.
metrics.pairwise.euclidean_distances(X[, Y, …]) Compute the distance matrix between each pair from a vector array X and Y.
metrics.pairwise.haversine_distances(X[, Y]) Compute the Haversine distance between samples in X and Y.
metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels.
metrics.pairwise.laplacian_kernel(X[, Y, gamma])Compute the laplacian kernel between X and Y.  
metrics.pairwise.linear_kernel(X[, Y, …]) Compute the linear kernel between X and Y.
metrics.pairwise.manhattan_distances(X[, Y, …]) Compute the L1 distances between the vectors in X and Y.
metrics.pairwise.nan_euclidean_distances(X) Calculate the euclidean distances in the presence of missing values.
metrics.pairwise.pairwise_kernels(X[, Y, …]) Compute the kernel between arrays X and optional array Y.
metrics.pairwise.polynomial_kernel(X[, Y, …]) Compute the polynomial kernel between X and Y.
metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y.
metrics.pairwise.sigmoid_kernel(X[, Y, …]) Compute the sigmoid kernel between X and Y.
metrics.pairwise.paired_euclidean_distances(X, Y) Compute the paired euclidean distances between X and Y.
metrics.pairwise.paired_manhattan_distances(X, Y) Compute the paired L1 distances between X and Y.
metrics.pairwise.paired_cosine_distances(X, Y) Compute the paired cosine distances between X and Y.
metrics.pairwise.paired_distances(X, Y, *[, …]) Compute the paired distances between X and Y.
metrics.pairwise_distances(X[, Y, metric, …]) Compute the distance matrix from a vector array X and optional Y.
metrics.pairwise_distances_argmin(X, Y, *[, …]) Compute minimum distances between one point and a set of points.
metrics.pairwise_distances_argmin_min(X, Y, *) Compute minimum distances between one point and a set of points.
metrics.pairwise_distances_chunked(X[, Y, …]) Generate a distance matrix chunk by chunk with optional reduction.

Plotting

   
metrics.ConfusionMatrixDisplay(…[, …]) Confusion Matrix visualization.
metrics.DetCurveDisplay(*, fpr, fnr[, …]) DET curve visualization.
metrics.PrecisionRecallDisplay(precision, …) Precision Recall visualization.
metrics.PredictionErrorDisplay(*, y_true, y_pred) Visualization of the prediction error of a regression model.
metrics.RocCurveDisplay(*, fpr, tpr[, …]) ROC Curve visualization.
calibration.CalibrationDisplay(prob_true, …) Calibration curve (also known as reliability diagram) visualization.

sklearn.mixture: Gaussian Mixture Models

   
mixture.BayesianGaussianMixture(*[, …]) Variational Bayesian estimation of a Gaussian mixture.
mixture.GaussianMixture([n_components, …]) Gaussian Mixture.

sklearn.model_selection: Model Selection

Splitter Classes

   
model_selection.GroupKFold([n_splits]) K-fold iterator variant with non-overlapping groups.
model_selection.GroupShuffleSplit([…]) Shuffle-Group(s)-Out cross-validation iterator
model_selection.KFold([n_splits, shuffle, …]) K-Folds cross-validator
model_selection.LeaveOneGroupOut() Leave One Group Out cross-validator
model_selection.LeavePGroupsOut(n_groups) Leave P Group(s) Out cross-validator
model_selection.LeaveOneOut() Leave-One-Out cross-validator
model_selection.LeavePOut(p) Leave-P-Out cross-validator
model_selection.PredefinedSplit(test_fold) Predefined split cross-validator
model_selection.RepeatedKFold(*[, n_splits, …]) Repeated K-Fold cross validator.
model_selection.RepeatedStratifiedKFold(*[, …]) Repeated Stratified K-Fold cross validator.
model_selection.ShuffleSplit([n_splits, …]) Random permutation cross-validator
model_selection.StratifiedKFold([n_splits, …]) Stratified K-Folds cross-validator.
model_selection.StratifiedShuffleSplit([…]) Stratified ShuffleSplit cross-validator
model_selection.StratifiedGroupKFold([…]) Stratified K-Folds iterator variant with non-overlapping groups.
model_selection.TimeSeriesSplit([n_splits, …]) Time Series cross-validator

Splitter Functions

   
model_selection.check_cv([cv, y, classifier]) Input checker utility for building a cross-validator.
model_selection.train_test_split(*arrays[, …]) Split arrays or matrices into random train and test subsets.

Hyper-parameter optimizers

   
model_selection.GridSearchCV(estimator, …) Exhaustive search over specified parameter values for an estimator.
model_selection.HalvingGridSearchCV(…[, …]) Search over specified parameter values with successive halving.
model_selection.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for each.
model_selection.ParameterSampler(…[, …]) Generator on parameters sampled from given distributions.
model_selection.RandomizedSearchCV(…[, …]) Randomized search on hyper parameters.
model_selection.HalvingRandomSearchCV(…[, …]) Randomized search on hyper parameters.

Model validation

   
model_selection.cross_validate(estimator, X) Evaluate metric(s) by cross-validation and also record fit/score times.
model_selection.cross_val_predict(estimator, X) Generate cross-validated estimates for each input data point.
model_selection.cross_val_score(estimator, X) Evaluate a score by cross-validation.
model_selection.learning_curve(estimator, X, …) Learning curve.
model_selection.permutation_test_score(…) Evaluate the significance of a cross-validated score with permutations.
model_selection.validation_curve(estimator, …) Validation curve.

Visualization

   
model_selection.LearningCurveDisplay(*, …) Learning Curve visualization.
model_selection.ValidationCurveDisplay(*, …) Validation Curve visualization.

sklearn.multiclass: Multiclass classification

   
multiclass.OneVsRestClassifier(estimator, *) One-vs-the-rest (OvR) multiclass strategy.
multiclass.OneVsOneClassifier(estimator, *) One-vs-one multiclass strategy.
multiclass.OutputCodeClassifier(estimator, *) (Error-Correcting) Output-Code multiclass strategy.

sklearn.multioutput: Multioutput regression and classification

   
multioutput.ClassifierChain(base_estimator, *) A multi-label model that arranges binary classifiers into a chain.
multioutput.MultiOutputRegressor(estimator, *) Multi target regression.
multioutput.MultiOutputClassifier(estimator, *) Multi target classification.
multioutput.RegressorChain(base_estimator, *) A multi-label model that arranges regressions into a chain.

sklearn.naive_bayes: Naive Bayes

   
naive_bayes.BernoulliNB(*[, alpha, …]) Naive Bayes classifier for multivariate Bernoulli models.
naive_bayes.CategoricalNB(*[, alpha, …]) Naive Bayes classifier for categorical features.
naive_bayes.ComplementNB(*[, alpha, …]) The Complement Naive Bayes classifier described in Rennie et al. (2003).
naive_bayes.GaussianNB(*[, priors, …]) Gaussian Naive Bayes (GaussianNB).
naive_bayes.MultinomialNB(*[, alpha, …]) Naive Bayes classifier for multinomial models.

sklearn.neighbors: Nearest Neighbors

   
neighbors.BallTree(X[, leaf_size, metric]) BallTree for fast generalized N-point problems
neighbors.KDTree(X[, leaf_size, metric]) KDTree for fast generalized N-point problems
neighbors.KernelDensity(*[, bandwidth, …]) Kernel Density Estimation.
neighbors.KNeighborsClassifier([…]) Classifier implementing the k-nearest neighbors vote.
neighbors.KNeighborsRegressor([n_neighbors, …]) Regression based on k-nearest neighbors.
neighbors.KNeighborsTransformer(*[, mode, …]) Transform X into a (weighted) graph of k nearest neighbors.
neighbors.LocalOutlierFactor([n_neighbors, …]) Unsupervised Outlier Detection using the Local Outlier Factor (LOF).
neighbors.RadiusNeighborsClassifier([…]) Classifier implementing a vote among neighbors within a given radius.
neighbors.RadiusNeighborsRegressor([radius, …]) Regression based on neighbors within a fixed radius.
neighbors.RadiusNeighborsTransformer(*[, …]) Transform X into a (weighted) graph of neighbors nearer than a radius.
neighbors.NearestCentroid([metric, …]) Nearest centroid classifier.
neighbors.NearestNeighbors(*[, n_neighbors, …]) Unsupervised learner for implementing neighbor searches.
neighbors.NeighborhoodComponentsAnalysis([…]) Neighborhood Components Analysis.
neighbors.kneighbors_graph(X, n_neighbors, *) Compute the (weighted) graph of k-Neighbors for points in X.
neighbors.radius_neighbors_graph(X, radius, *) Compute the (weighted) graph of Neighbors for points in X.
neighbors.sort_graph_by_row_values(graph[, …]) Sort a sparse graph such that each row is stored with increasing values.

sklearn.neural_network: Neural network models

   
pipeline.FeatureUnion(transformer_list, *[, …]) Concatenates results of multiple transformer objects.
pipeline.Pipeline(steps, *[, memory, verbose]) Pipeline of transforms with a final estimator.
pipeline.make_pipeline(*steps[, memory, verbose]) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers[, n_jobs, …]) Construct a FeatureUnion from the given transformers.

sklearn.pipeline: Pipeline

see here

sklearn.preprocessing: Preprocessing and Normalization

   
preprocessing.Binarizer(*[, threshold, copy]) Binarize data (set feature values to 0 or 1) according to a threshold.
preprocessing.FunctionTransformer([func, …]) Constructs a transformer from an arbitrary callable.
preprocessing.KBinsDiscretizer([n_bins, …]) Bin continuous data into intervals.
preprocessing.KernelCenterer() Center an arbitrary kernel matrix
preprocessing.LabelBinarizer(*[, neg_label, …]) Binarize labels in a one-vs-all fashion.
preprocessing.LabelEncoder() Encode target labels with value between 0 and n_classes-1.v
preprocessing.MultiLabelBinarizer(*[, …]) Transform between iterable of iterables and a multilabel format.
preprocessing.MaxAbsScaler(*[, copy]) Scale each feature by its maximum absolute value.
preprocessing.MinMaxScaler([feature_range, …]) Transform features by scaling each feature to a given range.
preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm.
preprocessing.OneHotEncoder(*[, categories, …]) Encode categorical features as a one-hot numeric array.
preprocessing.OrdinalEncoder(*[, …]) Encode categorical features as an integer array.
preprocessing.PolynomialFeatures([degree, …]) Generate polynomial and interaction features.
preprocessing.PowerTransformer([method, …]) Apply a power transform featurewise to make data more Gaussian-like.
preprocessing.QuantileTransformer(*[, …]) Transform features using quantiles information.
preprocessing.RobustScaler(*[, …]) Scale features using statistics that are robust to outliers.
preprocessing.SplineTransformer([n_knots, …]) Generate univariate B-spline bases for features.
preprocessing.StandardScaler(*[, copy, …]) Standardize features by removing the mean and scaling to unit variance.
preprocessing.TargetEncoder([categories, …]) Target Encoder for regression and classification targets.
preprocessing.add_dummy_feature(X[, value]) Augment dataset with an additional dummy feature.
preprocessing.binarize(X, *[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix.
preprocessing.label_binarize(y, *, classes) Binarize labels in a one-vs-all fashion.
preprocessing.maxabs_scale(X, *[, axis, copy]) Scale each feature to the [-1, 1] range without breaking the sparsity.
preprocessing.minmax_scale(X[, …]) Transform features by scaling each feature to a given range.
preprocessing.normalize(X[, norm, axis, …]) Scale input vectors individually to unit norm (vector length).
preprocessing.quantile_transform(X, *[, …]) Transform features using quantiles information.
preprocessing.robust_scale(X, *[, axis, …]) Standardize a dataset along any axis.
preprocessing.scale(X, *[, axis, with_mean, …]) Standardize a dataset along any axis.
preprocessing.power_transform(X[, method, …]) Parametric, monotonic transformation to make data more Gaussian-like.

sklearn.random_projection: Random projection

   
random_projection.GaussianRandomProjection([…]) Reduce dimensionality through Gaussian random projection.
random_projection.SparseRandomProjection([…]) Reduce dimensionality through sparse random projection.
random_projection.johnson_lindenstrauss_min_dim(…) Find a ‘safe’ number of components to randomly project to.

sklearn.semi_supervised: Semi-Supervised Learning

   
semi_supervised.LabelPropagation([kernel, …]) Label Propagation classifier.
semi_supervised.LabelSpreading([kernel, …]) LabelSpreading model for semi-supervised learning.
semi_supervised.SelfTrainingClassifier(…) Self-training classifier.

sklearn.svm: Support Vector Machines

   
svm.LinearSVC([penalty, loss, dual, tol, C, …]) Linear Support Vector Classification.
svm.LinearSVR(*[, epsilon, tol, C, loss, …]) Linear Support Vector Regression.
svm.NuSVC(*[, nu, kernel, degree, gamma, …]) Nu-Support Vector Classification.
svm.NuSVR(*[, nu, C, kernel, degree, gamma, …]) Nu Support Vector Regression.
svm.OneClassSVM(*[, kernel, degree, gamma, …]) Unsupervised Outlier Detection.
svm.SVC(*[, C, kernel, degree, gamma, …]) C-Support Vector Classification.
svm.SVR(*[, kernel, degree, gamma, coef0, …]) Epsilon-Support Vector Regression.
svm.l1_min_c(X, y, *[, loss, fit_intercept, …]) Return the lowest bound for C.

sklearn.tree: Decision Trees

   
tree.DecisionTreeClassifier(*[, criterion, …]) A decision tree classifier.
tree.DecisionTreeRegressor(*[, criterion, …]) A decision tree regressor.
tree.ExtraTreeClassifier(*[, criterion, …]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor(*[, criterion, …]) An extremely randomized tree regressor.
tree.export_graphviz(decision_tree[, …]) Export a decision tree in DOT format.
tree.export_text(decision_tree, *[, …]) Build a text report showing the rules of a decision tree.
tree.plot_tree(decision_tree, *[, …]) Plot a decision tree.

sklearn.utils: Utilities

see here

The source code is Open Source and can be found on GitHub.